Se ha encontrado que la alúmina existe en al menos 8 formas, que son α- Al2O3, θ- Al2O3, γ- Al2O3, δ- Al2O3, η- Al2O3, χ- Al2O3, κ- Al2O3 y ρ- Al2O3, sus respectivas propiedades estructurales macroscópicas también son diferentes. La alúmina activada gamma es un cristal cúbico compacto, insoluble en agua, pero soluble en ácido y álcali. La alúmina activada gamma es un soporte ácido débil, tiene un alto punto de fusión de 2050 ℃, el gel de alúmina en forma de hidrato se puede convertir en óxido con alta porosidad y alta superficie específica, tiene fases de transición en un amplio rango de temperatura. A mayor temperatura, debido a la deshidratación y deshidroxilación, la superficie de Al2O3 aparece con oxígeno insaturado de coordinación (centro alcalino) y aluminio (centro ácido), con actividad catalítica. Por lo tanto, la alúmina se puede utilizar como portador, catalizador y cocatalizador.
La alúmina gamma activada puede presentarse en polvo, gránulos, tiras u otros materiales. Podemos adaptarla a sus necesidades. El γ-Al₂O₃, también conocido como "alúmina activada", es un material sólido poroso de alta dispersión. Gracias a su estructura porosa ajustable, gran superficie específica, buen rendimiento de adsorción, superficie con ventajas en acidez y buena estabilidad térmica, y superficie microporosa con propiedades catalíticas esenciales, se ha convertido en el catalizador, portador de catalizador y portador cromatográfico más utilizado en la industria química y petrolera, desempeñando un papel importante en el hidrocraqueo de petróleo, la refinación por hidrogenación, el reformado por hidrogenación, la reacción de deshidrogenación y la purificación de gases de escape de automóviles. El γ-Al₂O₃ se utiliza ampliamente como portador de catalizador debido a la adaptabilidad de su estructura porosa y la acidez superficial. Cuando se utiliza como portador, además de dispersar y estabilizar los componentes activos, también puede proporcionar un centro activo ácido-alcalino, lo que genera una reacción sinérgica con los componentes catalíticos activos. La estructura de los poros y las propiedades de la superficie del catalizador dependen del portador γ-Al2O3, por lo que se encontraría un portador de alto rendimiento para una reacción catalítica específica controlando las propiedades del portador de alúmina gamma.
La alúmina gamma activada se obtiene generalmente de su precursor, la pseudoboehmita, mediante deshidratación a alta temperatura de 400 a 600 °C. Por lo tanto, las propiedades fisicoquímicas de la superficie dependen en gran medida de su precursor, la pseudoboehmita. Sin embargo, existen diversas maneras de producir pseudoboehmita, y las diferentes fuentes de pseudoboehmita dan lugar a la diversidad de gamma-Al₂O₃. Sin embargo, para aquellos catalizadores con requisitos especiales para el portador de alúmina, el control exclusivo de la pseudoboehmita precursora resulta difícil de lograr. Por lo tanto, se debe recurrir a la preparación de la profase y al posprocesamiento combinando enfoques para ajustar las propiedades de la alúmina a los diferentes requisitos. Cuando la temperatura de uso supera los 1000 °C, la alúmina presenta una transformación de fase: γ→δ→θ→α-Al₂O₃. Entre ellas, γ, δ y θ presentan un empaquetamiento cúbico compacto. La única diferencia radica en la distribución de los iones de aluminio en tetraedros y octaedros, por lo que esta transformación de fase no causa una variación significativa en las estructuras. Los iones de oxígeno en la fase alfa presentan un empaquetamiento hexagonal compacto, las partículas de óxido de aluminio presentan una grave concentración y la superficie específica disminuye considerablemente.
Evite la humedad, evite enrollarlo, arrojarlo y golpearlo fuerte durante el transporte, se deben preparar instalaciones a prueba de lluvia.
Debe almacenarse en un almacén seco y ventilado para evitar la contaminación o la humedad.